addEnergyOffset(Structure &structure, bool ref=true) | nnp::Mode | |
addTrainingLogEntry(int proc, std::size_t il, double f, std::size_t isg, std::size_t is) | nnp::Training | private |
addTrainingLogEntry(int proc, std::size_t il, double f, std::size_t isg, std::size_t is, std::size_t ia, std::size_t ic) | nnp::Training | private |
addTrainingLogEntry(int proc, std::size_t il, double f, std::size_t isg, std::size_t is, std::size_t ia) | nnp::Training | private |
advance() const | nnp::Training | private |
allocateArrays(std::string const &property) | nnp::Training | private |
calculateAtomicNeuralNetworks(Structure &structure, bool const derivatives, std::string id="") | nnp::Mode | |
calculateBufferSize(Structure const &structure) const | nnp::Dataset | |
calculateCharge(Structure &structure) const | nnp::Mode | |
calculateChargeErrorVec(Structure const &s, Eigen::VectorXd &cVec, double &cNorm) | nnp::Training | |
calculateEnergy(Structure &structure) const | nnp::Mode | |
calculateError(std::map< std::string, std::pair< std::string, std::string > > const fileNames) | nnp::Training | |
calculateErrorEpoch() | nnp::Training | |
calculateForces(Structure &structure) const | nnp::Mode | |
calculateNeighborLists() | nnp::Training | |
calculateSymmetryFunctionGroups(Structure &structure, bool const derivatives) | nnp::Mode | |
calculateSymmetryFunctions(Structure &structure, bool const derivatives) | nnp::Mode | |
calculateWeightDerivatives(Structure *structure) | nnp::Training | |
calculateWeightDerivatives(Structure *structure, std::size_t atom, std::size_t component) | nnp::Training | |
chargeEquilibration(Structure &structure, bool const derivativesElec) | nnp::Mode | |
checkExtrapolationWarnings | nnp::Mode | protected |
checkSelectionMode() | nnp::Training | |
collectDGdxia(Atom const &atom, std::size_t indexAtom, std::size_t indexComponent) | nnp::Training | private |
collectError(std::string const &property, std::map< std::string, double > &error, std::size_t &count) const | nnp::Dataset | |
collectSymmetryFunctionStatistics() | nnp::Dataset | |
combineFiles(std::string filePrefix) const | nnp::Dataset | |
comm | nnp::Dataset | protected |
convCharge | nnp::Mode | protected |
convEnergy | nnp::Mode | protected |
convertToNormalizedUnits(Structure &structure) const | nnp::Mode | |
convertToPhysicalUnits(Structure &structure) const | nnp::Mode | |
convLength | nnp::Mode | protected |
countUpdates | nnp::Training | private |
cutoffAlpha | nnp::Mode | protected |
cutoffs | nnp::Mode | protected |
cutoffType | nnp::Mode | protected |
Dataset() | nnp::Dataset | |
dataSetNormalization() | nnp::Training | |
dGdxia | nnp::Training | private |
distributeStructures(bool randomize, bool excludeRank0=false, std::string const &fileName="input.data") | nnp::Dataset | |
dPdc(std::string property, Structure &structure, std::vector< std::vector< double > > &dEdc) | nnp::Training | |
dPdcN(std::string property, Structure &structure, std::vector< std::vector< double > > &dEdc, double delta=1.0E-4) | nnp::Training | |
elementMap | nnp::Mode | |
elements | nnp::Mode | protected |
epoch | nnp::Training | private |
epochSchedule | nnp::Training | private |
erfcBuf | nnp::Mode | protected |
evaluateNNP(Structure &structure, bool useForces=true, bool useDEdG=true) | nnp::Mode | |
ewaldSetup | nnp::Mode | protected |
forceWeight | nnp::Training | private |
fourPiEps | nnp::Mode | protected |
freeMemory | nnp::Training | private |
getConnectionOffsets(std::string id="short") const | nnp::Training | |
getConvCharge() const | nnp::Mode | inline |
getConvEnergy() const | nnp::Mode | inline |
getConvLength() const | nnp::Mode | inline |
getEnergyOffset(Structure const &structure) const | nnp::Mode | |
getEnergyWithOffset(Structure const &structure, bool ref=true) const | nnp::Mode | |
getMaxCutoffRadius() const | nnp::Mode | inline |
getMeanEnergy() const | nnp::Mode | inline |
getNnpType() const | nnp::Mode | inline |
getNumConnections(std::string id="short") const | nnp::Training | |
getNumConnectionsPerElement(std::string id="short") const | nnp::Training | |
getNumElements() const | nnp::Mode | inline |
getNumExtrapolationWarnings() const | nnp::Mode | |
getNumStructures(std::ifstream &dataFile) | nnp::Dataset | |
getNumSymmetryFunctions() const | nnp::Mode | |
getSingleWeight(std::size_t element, std::size_t index) | nnp::Training | |
getWeights() | nnp::Training | private |
hasStructures | nnp::Training | private |
hasUpdaters | nnp::Training | private |
initialize() | nnp::Mode | |
initializeWeights() | nnp::Training | |
initializeWeightsMemory(UpdateStrategy updateStrategy=US_COMBINED) | nnp::Training | |
JacobianMode enum name | nnp::Training | |
jacobianMode | nnp::Training | private |
JM_FULL enum value | nnp::Training | |
JM_SUM enum value | nnp::Training | |
JM_TASK enum value | nnp::Training | |
loadSettingsFile(std::string const &fileName="input.nn") | nnp::Mode | |
log | nnp::Mode | |
logEwaldCutoffs() | nnp::Mode | |
loop() | nnp::Training | |
maxCutoffRadius | nnp::Mode | protected |
meanEnergy | nnp::Mode | protected |
minCutoffRadius | nnp::Mode | protected |
minNeighbors | nnp::Mode | protected |
Mode() | nnp::Mode | |
myName | nnp::Dataset | protected |
myRank | nnp::Dataset | protected |
nnId | nnp::Training | private |
nnk | nnp::Mode | protected |
NNPType enum name | nnp::Mode | |
nnpType | nnp::Mode | protected |
nns | nnp::Mode | protected |
normalize | nnp::Mode | protected |
normalized(std::string const &property, double value) const | nnp::Mode | |
normalizedEnergy(Structure const &structure, bool ref=true) const | nnp::Mode | |
numElements | nnp::Mode | protected |
numEpochs | nnp::Training | private |
numProcs | nnp::Dataset | protected |
numStructures | nnp::Dataset | protected |
numUpdaters | nnp::Training | private |
numWeights | nnp::Training | private |
numWeightsPerUpdater | nnp::Training | private |
p | nnp::Training | private |
ParallelMode enum name | nnp::Training | |
parallelMode | nnp::Training | private |
physical(std::string const &property, double value) const | nnp::Mode | |
physicalEnergy(Structure const &structure, bool ref=true) const | nnp::Mode | |
pk | nnp::Training | private |
PM_TRAIN_ALL enum value | nnp::Training | |
PM_TRAIN_RK0 enum value | nnp::Training | |
prepareNumericForces(Structure &original, double delta) | nnp::Dataset | |
printEpoch() | nnp::Training | |
printHeader() | nnp::Training | |
pruneSymmetryFunctionsRange(double threshold) | nnp::Mode | |
pruneSymmetryFunctionsSensitivity(double threshold, std::vector< std::vector< double > > sensitivity) | nnp::Mode | |
randomizeNeuralNetworkWeights(std::string const &id) | nnp::Training | private |
readNeuralNetworkWeights(std::string const &id, std::string const &fileName) | nnp::Mode | protected |
recvStructure(Structure *structure, int src) | nnp::Dataset | |
removeEnergyOffset(Structure &structure, bool ref=true) | nnp::Mode | |
repeatedEnergyUpdates | nnp::Training | private |
resetExtrapolationWarnings() | nnp::Mode | |
resetNeuronStatistics() | nnp::Training | |
rng | nnp::Dataset | protected |
rngGlobal | nnp::Dataset | protected |
rngGlobalNew | nnp::Training | private |
rngNew | nnp::Training | private |
scalingType | nnp::Mode | protected |
screeningFunction | nnp::Mode | protected |
SelectionMode enum name | nnp::Training | |
selectSets() | nnp::Training | |
sendStructure(Structure const &structure, int dest) const | nnp::Dataset | |
setEpochSchedule() | nnp::Training | |
setSingleWeight(std::size_t element, std::size_t index, double value) | nnp::Training | |
setStage(std::size_t stage) | nnp::Training | |
settings | nnp::Mode | protected |
settingsGetValue(std::string const &keyword) const | nnp::Mode | |
settingsKeywordExists(std::string const &keyword) const | nnp::Mode | |
setTrainingLogFileName(std::string fileName) | nnp::Training | |
setupCutoff() | nnp::Mode | |
setupCutoffMatrix() | nnp::Mode | |
setupElectrostatics(bool initialHardness=false, std::string directoryPrefix="", std::string fileNameFormat="hardness.%03zu.data") | nnp::Mode | virtual |
setupElementMap() | nnp::Mode | virtual |
setupElements() | nnp::Mode | virtual |
setupFileOutput(std::string const &type) | nnp::Training | private |
setupGeneric(std::string const &nnpDir="", bool skipNormalize=false, bool initialHardness=false) | nnp::Mode | |
setupMPI() | nnp::Dataset | |
setupMPI(MPI_Comm *communicator) | nnp::Dataset | |
setupNeuralNetwork() | nnp::Mode | virtual |
setupNeuralNetworkWeights(std::map< std::string, std::string > fileNameFormats=std::map< std::string, std::string >()) | nnp::Mode | virtual |
setupNeuralNetworkWeights(std::string directoryPrefix, std::map< std::string, std::string > fileNameFormats=std::map< std::string, std::string >()) | nnp::Mode | virtual |
setupNormalization(bool standalone=true) | nnp::Mode | |
setupNumericDerivCheck() | nnp::Training | |
setupRandomNumberGenerator() | nnp::Dataset | |
setupSelectionMode(std::string const &property) | nnp::Training | private |
setupSymmetryFunctionCache(bool verbose=false) | nnp::Mode | virtual |
setupSymmetryFunctionGroups() | nnp::Mode | virtual |
setupSymmetryFunctionMemory(bool verbose=false) | nnp::Mode | |
setupSymmetryFunctions() | nnp::Mode | virtual |
setupSymmetryFunctionScaling(std::string const &fileName="scaling.data") | nnp::Mode | virtual |
setupSymmetryFunctionScalingNone() | nnp::Mode | |
setupSymmetryFunctionStatistics(bool collectStatistics, bool collectExtrapolationWarnings, bool writeExtrapolationWarnings, bool stopOnExtrapolationWarnings) | nnp::Mode | |
setupTraining() | nnp::Training | |
setupUpdatePlan(std::string const &property) | nnp::Training | private |
setWeights() | nnp::Training | private |
shuffleUpdateCandidates(std::string const &property) | nnp::Training | |
SM_RANDOM enum value | nnp::Training | |
SM_SORT enum value | nnp::Training | |
SM_THRESHOLD enum value | nnp::Training | |
sortNeighborLists() | nnp::Dataset | |
sortUpdateCandidates(std::string const &property) | nnp::Training | |
stage | nnp::Training | private |
structures | nnp::Dataset | |
sw | nnp::Training | private |
toNormalizedUnits() | nnp::Dataset | |
toPhysicalUnits() | nnp::Dataset | |
Training() | nnp::Training | |
trainingLog | nnp::Training | private |
trainingLogFileName | nnp::Training | private |
update(std::string const &property) | nnp::Training | |
updaters | nnp::Training | private |
updaterType | nnp::Training | private |
UpdaterType enum name | nnp::Training | |
UpdateStrategy enum name | nnp::Training | |
updateStrategy | nnp::Training | private |
US_COMBINED enum value | nnp::Training | |
US_ELEMENT enum value | nnp::Training | |
useForces | nnp::Training | private |
useNormalization() const | nnp::Mode | inline |
UT_GD enum value | nnp::Training | |
UT_KF enum value | nnp::Training | |
UT_LM enum value | nnp::Training | |
weights | nnp::Training | private |
weightsOffset | nnp::Training | private |
writeAtomicEnvironmentFile(std::vector< std::vector< std::size_t > > neighCutoff, bool derivatives, std::string const &fileNamePrefix="atomic-env") | nnp::Dataset | |
writeHardness(std::string const &fileNameFormat) const | nnp::Training | |
writeHardnessEpoch() const | nnp::Training | |
writeLearningCurve(bool append, std::string const fileName="learning-curve.out") const | nnp::Training | |
writeNeighborHistogram(std::string const &fileNameHisto="neighbors.histo", std::string const &fileNameStructure="neighbors.out") | nnp::Dataset | |
writeNeighborLists(std::string const &fileName="neighbor-list.data") | nnp::Dataset | |
writeNeuronStatistics(std::string const &nnName, std::string const &fileName) const | nnp::Training | |
writeNeuronStatisticsAlways | nnp::Training | private |
writeNeuronStatisticsEpoch() const | nnp::Training | |
writeNeuronStatisticsEvery | nnp::Training | private |
writePrunedSettingsFile(std::vector< std::size_t > prune, std::string fileName="output.nn") const | nnp::Mode | |
writeSetsToFiles() | nnp::Training | |
writeSettingsFile(std::ofstream *const &file) const | nnp::Mode | |
writeSymmetryFunctionFile(std::string fileName="function.data") | nnp::Dataset | |
writeSymmetryFunctionHistograms(std::size_t numBins, std::string fileNameFormat="sf.%03zu.%04zu.histo") | nnp::Dataset | |
writeSymmetryFunctionScaling(std::string const &fileName="scaling.data") | nnp::Dataset | |
writeTimingData(bool append, std::string const fileName="timing.out") | nnp::Training | private |
writeTrainingLog | nnp::Training | private |
writeUpdaterStatus(bool append, std::string const fileNameFormat="updater.%03zu.out") const | nnp::Training | |
writeWeights(std::string const &nnName, std::string const &fileNameFormat) const | nnp::Training | |
writeWeightsAlways | nnp::Training | private |
writeWeightsEpoch() const | nnp::Training | |
writeWeightsEvery | nnp::Training | private |
~Dataset() | nnp::Dataset | |
~Training() | nnp::Training | |