n2p2 - A neural network potential package
nnp::Training Member List

This is the complete list of members for nnp::Training, including all inherited members.

addEnergyOffset(Structure &structure, bool ref=true)nnp::Mode
addTrainingLogEntry(int proc, std::size_t il, double f, std::size_t isg, std::size_t is)nnp::Trainingprivate
addTrainingLogEntry(int proc, std::size_t il, double f, std::size_t isg, std::size_t is, std::size_t ia, std::size_t ic)nnp::Trainingprivate
addTrainingLogEntry(int proc, std::size_t il, double f, std::size_t isg, std::size_t is, std::size_t ia)nnp::Trainingprivate
advance() constnnp::Trainingprivate
allocateArrays(std::string const &property)nnp::Trainingprivate
calculateAtomicNeuralNetworks(Structure &structure, bool const derivatives, std::string id="")nnp::Mode
calculateBufferSize(Structure const &structure) constnnp::Dataset
calculateCharge(Structure &structure) constnnp::Mode
calculateChargeErrorVec(Structure const &s, Eigen::VectorXd &cVec, double &cNorm)nnp::Training
calculateEnergy(Structure &structure) constnnp::Mode
calculateError(std::map< std::string, std::pair< std::string, std::string > > const fileNames)nnp::Training
calculateErrorEpoch()nnp::Training
calculateForces(Structure &structure) constnnp::Mode
calculateNeighborLists()nnp::Training
calculateSymmetryFunctionGroups(Structure &structure, bool const derivatives)nnp::Mode
calculateSymmetryFunctions(Structure &structure, bool const derivatives)nnp::Mode
calculateWeightDerivatives(Structure *structure)nnp::Training
calculateWeightDerivatives(Structure *structure, std::size_t atom, std::size_t component)nnp::Training
chargeEquilibration(Structure &structure, bool const derivativesElec)nnp::Mode
checkExtrapolationWarningsnnp::Modeprotected
checkSelectionMode()nnp::Training
collectDGdxia(Atom const &atom, std::size_t indexAtom, std::size_t indexComponent)nnp::Trainingprivate
collectError(std::string const &property, std::map< std::string, double > &error, std::size_t &count) constnnp::Dataset
collectSymmetryFunctionStatistics()nnp::Dataset
combineFiles(std::string filePrefix) constnnp::Dataset
commnnp::Datasetprotected
convChargennp::Modeprotected
convEnergynnp::Modeprotected
convertToNormalizedUnits(Structure &structure) constnnp::Mode
convertToPhysicalUnits(Structure &structure) constnnp::Mode
convLengthnnp::Modeprotected
countUpdatesnnp::Trainingprivate
cutoffAlphannp::Modeprotected
cutoffsnnp::Modeprotected
cutoffTypennp::Modeprotected
Dataset()nnp::Dataset
dataSetNormalization()nnp::Training
dGdxiannp::Trainingprivate
distributeStructures(bool randomize, bool excludeRank0=false, std::string const &fileName="input.data")nnp::Dataset
dPdc(std::string property, Structure &structure, std::vector< std::vector< double > > &dEdc)nnp::Training
dPdcN(std::string property, Structure &structure, std::vector< std::vector< double > > &dEdc, double delta=1.0E-4)nnp::Training
elementMapnnp::Mode
elementsnnp::Modeprotected
epochnnp::Trainingprivate
epochSchedulennp::Trainingprivate
erfcBufnnp::Modeprotected
evaluateNNP(Structure &structure, bool useForces=true, bool useDEdG=true)nnp::Mode
ewaldSetupnnp::Modeprotected
forceWeightnnp::Trainingprivate
fourPiEpsnnp::Modeprotected
freeMemorynnp::Trainingprivate
getConnectionOffsets(std::string id="short") constnnp::Training
getConvCharge() constnnp::Modeinline
getConvEnergy() constnnp::Modeinline
getConvLength() constnnp::Modeinline
getEnergyOffset(Structure const &structure) constnnp::Mode
getEnergyWithOffset(Structure const &structure, bool ref=true) constnnp::Mode
getMaxCutoffRadius() constnnp::Modeinline
getMeanEnergy() constnnp::Modeinline
getNnpType() constnnp::Modeinline
getNumConnections(std::string id="short") constnnp::Training
getNumConnectionsPerElement(std::string id="short") constnnp::Training
getNumElements() constnnp::Modeinline
getNumExtrapolationWarnings() constnnp::Mode
getNumStructures(std::ifstream &dataFile)nnp::Dataset
getNumSymmetryFunctions() constnnp::Mode
getSingleWeight(std::size_t element, std::size_t index)nnp::Training
getWeights()nnp::Trainingprivate
hasStructuresnnp::Trainingprivate
hasUpdatersnnp::Trainingprivate
initialize()nnp::Mode
initializeWeights()nnp::Training
initializeWeightsMemory(UpdateStrategy updateStrategy=US_COMBINED)nnp::Training
JacobianMode enum namennp::Training
jacobianModennp::Trainingprivate
JM_FULL enum valuennp::Training
JM_SUM enum valuennp::Training
JM_TASK enum valuennp::Training
loadSettingsFile(std::string const &fileName="input.nn")nnp::Mode
lognnp::Mode
logEwaldCutoffs()nnp::Mode
loop()nnp::Training
maxCutoffRadiusnnp::Modeprotected
meanEnergynnp::Modeprotected
minCutoffRadiusnnp::Modeprotected
minNeighborsnnp::Modeprotected
Mode()nnp::Mode
myNamennp::Datasetprotected
myRanknnp::Datasetprotected
nnIdnnp::Trainingprivate
nnknnp::Modeprotected
NNPType enum namennp::Mode
nnpTypennp::Modeprotected
nnsnnp::Modeprotected
normalizennp::Modeprotected
normalized(std::string const &property, double value) constnnp::Mode
normalizedEnergy(Structure const &structure, bool ref=true) constnnp::Mode
numElementsnnp::Modeprotected
numEpochsnnp::Trainingprivate
numProcsnnp::Datasetprotected
numStructuresnnp::Datasetprotected
numUpdatersnnp::Trainingprivate
numWeightsnnp::Trainingprivate
numWeightsPerUpdaternnp::Trainingprivate
pnnp::Trainingprivate
ParallelMode enum namennp::Training
parallelModennp::Trainingprivate
physical(std::string const &property, double value) constnnp::Mode
physicalEnergy(Structure const &structure, bool ref=true) constnnp::Mode
pknnp::Trainingprivate
PM_TRAIN_ALL enum valuennp::Training
PM_TRAIN_RK0 enum valuennp::Training
prepareNumericForces(Structure &original, double delta)nnp::Dataset
printEpoch()nnp::Training
printHeader()nnp::Training
pruneSymmetryFunctionsRange(double threshold)nnp::Mode
pruneSymmetryFunctionsSensitivity(double threshold, std::vector< std::vector< double > > sensitivity)nnp::Mode
randomizeNeuralNetworkWeights(std::string const &id)nnp::Trainingprivate
readNeuralNetworkWeights(std::string const &id, std::string const &fileName)nnp::Modeprotected
recvStructure(Structure *structure, int src)nnp::Dataset
removeEnergyOffset(Structure &structure, bool ref=true)nnp::Mode
repeatedEnergyUpdatesnnp::Trainingprivate
resetExtrapolationWarnings()nnp::Mode
resetNeuronStatistics()nnp::Training
rngnnp::Datasetprotected
rngGlobalnnp::Datasetprotected
rngGlobalNewnnp::Trainingprivate
rngNewnnp::Trainingprivate
scalingTypennp::Modeprotected
screeningFunctionnnp::Modeprotected
SelectionMode enum namennp::Training
selectSets()nnp::Training
sendStructure(Structure const &structure, int dest) constnnp::Dataset
setEpochSchedule()nnp::Training
setSingleWeight(std::size_t element, std::size_t index, double value)nnp::Training
setStage(std::size_t stage)nnp::Training
settingsnnp::Modeprotected
settingsGetValue(std::string const &keyword) constnnp::Mode
settingsKeywordExists(std::string const &keyword) constnnp::Mode
setTrainingLogFileName(std::string fileName)nnp::Training
setupCutoff()nnp::Mode
setupCutoffMatrix()nnp::Mode
setupElectrostatics(bool initialHardness=false, std::string directoryPrefix="", std::string fileNameFormat="hardness.%03zu.data")nnp::Modevirtual
setupElementMap()nnp::Modevirtual
setupElements()nnp::Modevirtual
setupFileOutput(std::string const &type)nnp::Trainingprivate
setupGeneric(std::string const &nnpDir="", bool skipNormalize=false, bool initialHardness=false)nnp::Mode
setupMPI()nnp::Dataset
setupMPI(MPI_Comm *communicator)nnp::Dataset
setupNeuralNetwork()nnp::Modevirtual
setupNeuralNetworkWeights(std::map< std::string, std::string > fileNameFormats=std::map< std::string, std::string >())nnp::Modevirtual
setupNeuralNetworkWeights(std::string directoryPrefix, std::map< std::string, std::string > fileNameFormats=std::map< std::string, std::string >())nnp::Modevirtual
setupNormalization(bool standalone=true)nnp::Mode
setupNumericDerivCheck()nnp::Training
setupRandomNumberGenerator()nnp::Dataset
setupSelectionMode(std::string const &property)nnp::Trainingprivate
setupSymmetryFunctionCache(bool verbose=false)nnp::Modevirtual
setupSymmetryFunctionGroups()nnp::Modevirtual
setupSymmetryFunctionMemory(bool verbose=false)nnp::Mode
setupSymmetryFunctions()nnp::Modevirtual
setupSymmetryFunctionScaling(std::string const &fileName="scaling.data")nnp::Modevirtual
setupSymmetryFunctionScalingNone()nnp::Mode
setupSymmetryFunctionStatistics(bool collectStatistics, bool collectExtrapolationWarnings, bool writeExtrapolationWarnings, bool stopOnExtrapolationWarnings)nnp::Mode
setupTraining()nnp::Training
setupUpdatePlan(std::string const &property)nnp::Trainingprivate
setWeights()nnp::Trainingprivate
shuffleUpdateCandidates(std::string const &property)nnp::Training
SM_RANDOM enum valuennp::Training
SM_SORT enum valuennp::Training
SM_THRESHOLD enum valuennp::Training
sortNeighborLists()nnp::Dataset
sortUpdateCandidates(std::string const &property)nnp::Training
stagennp::Trainingprivate
structuresnnp::Dataset
swnnp::Trainingprivate
toNormalizedUnits()nnp::Dataset
toPhysicalUnits()nnp::Dataset
Training()nnp::Training
trainingLognnp::Trainingprivate
trainingLogFileNamennp::Trainingprivate
update(std::string const &property)nnp::Training
updatersnnp::Trainingprivate
updaterTypennp::Trainingprivate
UpdaterType enum namennp::Training
UpdateStrategy enum namennp::Training
updateStrategynnp::Trainingprivate
US_COMBINED enum valuennp::Training
US_ELEMENT enum valuennp::Training
useForcesnnp::Trainingprivate
useNormalization() constnnp::Modeinline
UT_GD enum valuennp::Training
UT_KF enum valuennp::Training
UT_LM enum valuennp::Training
weightsnnp::Trainingprivate
weightsOffsetnnp::Trainingprivate
writeAtomicEnvironmentFile(std::vector< std::vector< std::size_t > > neighCutoff, bool derivatives, std::string const &fileNamePrefix="atomic-env")nnp::Dataset
writeHardness(std::string const &fileNameFormat) constnnp::Training
writeHardnessEpoch() constnnp::Training
writeLearningCurve(bool append, std::string const fileName="learning-curve.out") constnnp::Training
writeNeighborHistogram(std::string const &fileNameHisto="neighbors.histo", std::string const &fileNameStructure="neighbors.out")nnp::Dataset
writeNeighborLists(std::string const &fileName="neighbor-list.data")nnp::Dataset
writeNeuronStatistics(std::string const &nnName, std::string const &fileName) constnnp::Training
writeNeuronStatisticsAlwaysnnp::Trainingprivate
writeNeuronStatisticsEpoch() constnnp::Training
writeNeuronStatisticsEverynnp::Trainingprivate
writePrunedSettingsFile(std::vector< std::size_t > prune, std::string fileName="output.nn") constnnp::Mode
writeSetsToFiles()nnp::Training
writeSettingsFile(std::ofstream *const &file) constnnp::Mode
writeSymmetryFunctionFile(std::string fileName="function.data")nnp::Dataset
writeSymmetryFunctionHistograms(std::size_t numBins, std::string fileNameFormat="sf.%03zu.%04zu.histo")nnp::Dataset
writeSymmetryFunctionScaling(std::string const &fileName="scaling.data")nnp::Dataset
writeTimingData(bool append, std::string const fileName="timing.out")nnp::Trainingprivate
writeTrainingLognnp::Trainingprivate
writeUpdaterStatus(bool append, std::string const fileNameFormat="updater.%03zu.out") constnnp::Training
writeWeights(std::string const &nnName, std::string const &fileNameFormat) constnnp::Training
writeWeightsAlwaysnnp::Trainingprivate
writeWeightsEpoch() constnnp::Training
writeWeightsEverynnp::Trainingprivate
~Dataset()nnp::Dataset
~Training()nnp::Training