| addEnergyOffset(Structure &structure, bool ref=true) | nnp::Mode | |
| addTrainingLogEntry(int proc, std::size_t il, double f, std::size_t isg, std::size_t is) | nnp::Training | private |
| addTrainingLogEntry(int proc, std::size_t il, double f, std::size_t isg, std::size_t is, std::size_t ia, std::size_t ic) | nnp::Training | private |
| addTrainingLogEntry(int proc, std::size_t il, double f, std::size_t isg, std::size_t is, std::size_t ia) | nnp::Training | private |
| advance() const | nnp::Training | private |
| allocateArrays(std::string const &property) | nnp::Training | private |
| calculateAtomicNeuralNetworks(Structure &structure, bool const derivatives, std::string id="") | nnp::Mode | |
| calculateBufferSize(Structure const &structure) const | nnp::Dataset | |
| calculateCharge(Structure &structure) const | nnp::Mode | |
| calculateChargeErrorVec(Structure const &s, Eigen::VectorXd &cVec, double &cNorm) | nnp::Training | |
| calculateEnergy(Structure &structure) const | nnp::Mode | |
| calculateError(std::map< std::string, std::pair< std::string, std::string > > const fileNames) | nnp::Training | |
| calculateErrorEpoch() | nnp::Training | |
| calculateForces(Structure &structure) const | nnp::Mode | |
| calculateNeighborLists() | nnp::Training | |
| calculateSymmetryFunctionGroups(Structure &structure, bool const derivatives) | nnp::Mode | |
| calculateSymmetryFunctions(Structure &structure, bool const derivatives) | nnp::Mode | |
| calculateWeightDerivatives(Structure *structure) | nnp::Training | |
| calculateWeightDerivatives(Structure *structure, std::size_t atom, std::size_t component) | nnp::Training | |
| chargeEquilibration(Structure &structure, bool const derivativesElec) | nnp::Mode | |
| checkExtrapolationWarnings | nnp::Mode | protected |
| checkSelectionMode() | nnp::Training | |
| collectDGdxia(Atom const &atom, std::size_t indexAtom, std::size_t indexComponent) | nnp::Training | private |
| collectError(std::string const &property, std::map< std::string, double > &error, std::size_t &count) const | nnp::Dataset | |
| collectSymmetryFunctionStatistics() | nnp::Dataset | |
| combineFiles(std::string filePrefix) const | nnp::Dataset | |
| comm | nnp::Dataset | protected |
| convCharge | nnp::Mode | protected |
| convEnergy | nnp::Mode | protected |
| convertToNormalizedUnits(Structure &structure) const | nnp::Mode | |
| convertToPhysicalUnits(Structure &structure) const | nnp::Mode | |
| convLength | nnp::Mode | protected |
| countUpdates | nnp::Training | private |
| cutoffAlpha | nnp::Mode | protected |
| cutoffs | nnp::Mode | protected |
| cutoffType | nnp::Mode | protected |
| Dataset() | nnp::Dataset | |
| dataSetNormalization() | nnp::Training | |
| dGdxia | nnp::Training | private |
| distributeStructures(bool randomize, bool excludeRank0=false, std::string const &fileName="input.data") | nnp::Dataset | |
| dPdc(std::string property, Structure &structure, std::vector< std::vector< double > > &dEdc) | nnp::Training | |
| dPdcN(std::string property, Structure &structure, std::vector< std::vector< double > > &dEdc, double delta=1.0E-4) | nnp::Training | |
| elementMap | nnp::Mode | |
| elements | nnp::Mode | protected |
| epoch | nnp::Training | private |
| epochSchedule | nnp::Training | private |
| erfcBuf | nnp::Mode | protected |
| evaluateNNP(Structure &structure, bool useForces=true, bool useDEdG=true) | nnp::Mode | |
| ewaldSetup | nnp::Mode | protected |
| forceWeight | nnp::Training | private |
| fourPiEps | nnp::Mode | protected |
| freeMemory | nnp::Training | private |
| getConnectionOffsets(std::string id="short") const | nnp::Training | |
| getConvCharge() const | nnp::Mode | inline |
| getConvEnergy() const | nnp::Mode | inline |
| getConvLength() const | nnp::Mode | inline |
| getEnergyOffset(Structure const &structure) const | nnp::Mode | |
| getEnergyWithOffset(Structure const &structure, bool ref=true) const | nnp::Mode | |
| getEwaldMaxCharge() const | nnp::Mode | inline |
| getEwaldMaxSigma() const | nnp::Mode | inline |
| getEwaldPrecision() const | nnp::Mode | inline |
| getEwaldTruncationMethod() const | nnp::Mode | inline |
| getMaxCutoffRadius() const | nnp::Mode | inline |
| getMeanEnergy() const | nnp::Mode | inline |
| getNnpType() const | nnp::Mode | inline |
| getNumConnections(std::string id="short") const | nnp::Training | |
| getNumConnectionsPerElement(std::string id="short") const | nnp::Training | |
| getNumElements() const | nnp::Mode | inline |
| getNumExtrapolationWarnings() const | nnp::Mode | |
| getNumStructures(std::ifstream &dataFile) | nnp::Dataset | |
| getNumSymmetryFunctions() const | nnp::Mode | |
| getScreeningFunction() const | nnp::Mode | |
| getSingleWeight(std::size_t element, std::size_t index) | nnp::Training | |
| getWeights() | nnp::Training | private |
| hasStructures | nnp::Training | private |
| hasUpdaters | nnp::Training | private |
| initialize() | nnp::Mode | |
| initializeWeights() | nnp::Training | |
| initializeWeightsMemory(UpdateStrategy updateStrategy=US_COMBINED) | nnp::Training | |
| JacobianMode enum name | nnp::Training | |
| jacobianMode | nnp::Training | private |
| JM_FULL enum value | nnp::Training | |
| JM_SUM enum value | nnp::Training | |
| JM_TASK enum value | nnp::Training | |
| kspaceGrid | nnp::Mode | protected |
| kspaceSolver() const | nnp::Mode | inline |
| loadSettingsFile(std::string const &fileName="input.nn") | nnp::Mode | |
| log | nnp::Mode | |
| logEwaldCutoffs() | nnp::Mode | |
| loop() | nnp::Training | |
| maxCutoffRadius | nnp::Mode | protected |
| meanEnergy | nnp::Mode | protected |
| minCutoffRadius | nnp::Mode | protected |
| minNeighbors | nnp::Mode | protected |
| Mode() | nnp::Mode | |
| myName | nnp::Dataset | protected |
| myRank | nnp::Dataset | protected |
| nnId | nnp::Training | private |
| nnk | nnp::Mode | protected |
| NNPType enum name | nnp::Mode | |
| nnpType | nnp::Mode | protected |
| nns | nnp::Mode | protected |
| normalize | nnp::Mode | protected |
| normalized(std::string const &property, double value) const | nnp::Mode | |
| normalizedEnergy(Structure const &structure, bool ref=true) const | nnp::Mode | |
| numElements | nnp::Mode | protected |
| numEpochs | nnp::Training | private |
| numProcs | nnp::Dataset | protected |
| numStructures | nnp::Dataset | protected |
| numUpdaters | nnp::Training | private |
| numWeights | nnp::Training | private |
| numWeightsPerUpdater | nnp::Training | private |
| p | nnp::Training | private |
| ParallelMode enum name | nnp::Training | |
| parallelMode | nnp::Training | private |
| physical(std::string const &property, double value) const | nnp::Mode | |
| physicalEnergy(Structure const &structure, bool ref=true) const | nnp::Mode | |
| pk | nnp::Training | private |
| PM_TRAIN_ALL enum value | nnp::Training | |
| PM_TRAIN_RK0 enum value | nnp::Training | |
| prepareNumericForces(Structure &original, double delta) | nnp::Dataset | |
| printEpoch() | nnp::Training | |
| printHeader() | nnp::Training | |
| pruneSymmetryFunctionsRange(double threshold) | nnp::Mode | |
| pruneSymmetryFunctionsSensitivity(double threshold, std::vector< std::vector< double > > sensitivity) | nnp::Mode | |
| randomizeNeuralNetworkWeights(std::string const &id) | nnp::Training | private |
| readNeuralNetworkWeights(std::string const &id, std::string const &fileName) | nnp::Mode | protected |
| recvStructure(Structure *structure, int src) | nnp::Dataset | |
| removeEnergyOffset(Structure &structure, bool ref=true) | nnp::Mode | |
| repeatedEnergyUpdates | nnp::Training | private |
| resetExtrapolationWarnings() | nnp::Mode | |
| resetNeuronStatistics() | nnp::Training | |
| rng | nnp::Dataset | protected |
| rngGlobal | nnp::Dataset | protected |
| rngGlobalNew | nnp::Training | private |
| rngNew | nnp::Training | private |
| scalingType | nnp::Mode | protected |
| screeningFunction | nnp::Mode | protected |
| SelectionMode enum name | nnp::Training | |
| selectSets() | nnp::Training | |
| sendStructure(Structure const &structure, int dest) const | nnp::Dataset | |
| setEpochSchedule() | nnp::Training | |
| setSingleWeight(std::size_t element, std::size_t index, double value) | nnp::Training | |
| setStage(std::size_t stage) | nnp::Training | |
| settings | nnp::Mode | protected |
| settingsGetValue(std::string const &keyword) const | nnp::Mode | |
| settingsKeywordExists(std::string const &keyword) const | nnp::Mode | |
| setTrainingLogFileName(std::string fileName) | nnp::Training | |
| setupCutoff() | nnp::Mode | |
| setupCutoffMatrix() | nnp::Mode | |
| setupElectrostatics(bool initialHardness=false, std::string directoryPrefix="", std::string fileNameFormat="hardness.%03zu.data") | nnp::Mode | virtual |
| setupElementMap() | nnp::Mode | virtual |
| setupElements() | nnp::Mode | virtual |
| setupFileOutput(std::string const &type) | nnp::Training | private |
| setupGeneric(std::string const &nnpDir="", bool skipNormalize=false, bool initialHardness=false) | nnp::Mode | |
| setupMPI() | nnp::Dataset | |
| setupMPI(MPI_Comm *communicator) | nnp::Dataset | |
| setupNeuralNetwork() | nnp::Mode | virtual |
| setupNeuralNetworkWeights(std::map< std::string, std::string > fileNameFormats=std::map< std::string, std::string >()) | nnp::Mode | virtual |
| setupNeuralNetworkWeights(std::string directoryPrefix, std::map< std::string, std::string > fileNameFormats=std::map< std::string, std::string >()) | nnp::Mode | virtual |
| setupNormalization(bool standalone=true) | nnp::Mode | |
| setupNumericDerivCheck() | nnp::Training | |
| setupRandomNumberGenerator() | nnp::Dataset | |
| setupSelectionMode(std::string const &property) | nnp::Training | private |
| setupSymmetryFunctionCache(bool verbose=false) | nnp::Mode | virtual |
| setupSymmetryFunctionGroups() | nnp::Mode | virtual |
| setupSymmetryFunctionMemory(bool verbose=false) | nnp::Mode | |
| setupSymmetryFunctions() | nnp::Mode | virtual |
| setupSymmetryFunctionScaling(std::string const &fileName="scaling.data") | nnp::Mode | virtual |
| setupSymmetryFunctionScalingNone() | nnp::Mode | |
| setupSymmetryFunctionStatistics(bool collectStatistics, bool collectExtrapolationWarnings, bool writeExtrapolationWarnings, bool stopOnExtrapolationWarnings) | nnp::Mode | |
| setupTraining() | nnp::Training | |
| setupUpdatePlan(std::string const &property) | nnp::Training | private |
| setWeights() | nnp::Training | private |
| shuffleUpdateCandidates(std::string const &property) | nnp::Training | |
| SM_RANDOM enum value | nnp::Training | |
| SM_SORT enum value | nnp::Training | |
| SM_THRESHOLD enum value | nnp::Training | |
| sortNeighborLists() | nnp::Dataset | |
| sortUpdateCandidates(std::string const &property) | nnp::Training | |
| stage | nnp::Training | private |
| structures | nnp::Dataset | |
| sw | nnp::Training | private |
| toNormalizedUnits() | nnp::Dataset | |
| toPhysicalUnits() | nnp::Dataset | |
| Training() | nnp::Training | |
| trainingLog | nnp::Training | private |
| trainingLogFileName | nnp::Training | private |
| update(std::string const &property) | nnp::Training | |
| updaters | nnp::Training | private |
| UpdaterType enum name | nnp::Training | |
| updaterType | nnp::Training | private |
| UpdateStrategy enum name | nnp::Training | |
| updateStrategy | nnp::Training | private |
| US_COMBINED enum value | nnp::Training | |
| US_ELEMENT enum value | nnp::Training | |
| useForces | nnp::Training | private |
| useNormalization() const | nnp::Mode | inline |
| UT_GD enum value | nnp::Training | |
| UT_KF enum value | nnp::Training | |
| UT_LM enum value | nnp::Training | |
| weights | nnp::Training | private |
| weightsOffset | nnp::Training | private |
| writeAtomicEnvironmentFile(std::vector< std::vector< std::size_t > > neighCutoff, bool derivatives, std::string const &fileNamePrefix="atomic-env") | nnp::Dataset | |
| writeHardness(std::string const &fileNameFormat) const | nnp::Training | |
| writeHardnessEpoch() const | nnp::Training | |
| writeLearningCurve(bool append, std::string const fileName="learning-curve.out") const | nnp::Training | |
| writeNeighborHistogram(std::string const &fileNameHisto="neighbors.histo", std::string const &fileNameStructure="neighbors.out") | nnp::Dataset | |
| writeNeighborLists(std::string const &fileName="neighbor-list.data") | nnp::Dataset | |
| writeNeuronStatistics(std::string const &nnName, std::string const &fileName) const | nnp::Training | |
| writeNeuronStatisticsAlways | nnp::Training | private |
| writeNeuronStatisticsEpoch() const | nnp::Training | |
| writeNeuronStatisticsEvery | nnp::Training | private |
| writePrunedSettingsFile(std::vector< std::size_t > prune, std::string fileName="output.nn") const | nnp::Mode | |
| writeSetsToFiles() | nnp::Training | |
| writeSettingsFile(std::ofstream *const &file) const | nnp::Mode | |
| writeSymmetryFunctionFile(std::string fileName="function.data") | nnp::Dataset | |
| writeSymmetryFunctionHistograms(std::size_t numBins, std::string fileNameFormat="sf.%03zu.%04zu.histo") | nnp::Dataset | |
| writeSymmetryFunctionScaling(std::string const &fileName="scaling.data") | nnp::Dataset | |
| writeTimingData(bool append, std::string const fileName="timing.out") | nnp::Training | private |
| writeTrainingLog | nnp::Training | private |
| writeUpdaterStatus(bool append, std::string const fileNameFormat="updater.%03zu.out") const | nnp::Training | |
| writeWeights(std::string const &nnName, std::string const &fileNameFormat) const | nnp::Training | |
| writeWeightsAlways | nnp::Training | private |
| writeWeightsEpoch() const | nnp::Training | |
| writeWeightsEvery | nnp::Training | private |
| ~Dataset() | nnp::Dataset | |
| ~Training() | nnp::Training | |