n2p2 - A neural network potential package
Loading...
Searching...
No Matches
SymFncCompAngnWeighted.cpp
Go to the documentation of this file.
1// n2p2 - A neural network potential package
2// Copyright (C) 2018 Andreas Singraber (University of Vienna)
3// Copyright (C) 2020 Martin P. Bircher
4//
5// This program is free software: you can redistribute it and/or modify
6// it under the terms of the GNU General Public License as published by
7// the Free Software Foundation, either version 3 of the License, or
8// (at your option) any later version.
9//
10// This program is distributed in the hope that it will be useful,
11// but WITHOUT ANY WARRANTY; without even the implied warranty of
12// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13// GNU General Public License for more details.
14//
15// You should have received a copy of the GNU General Public License
16// along with this program. If not, see <https://www.gnu.org/licenses/>.
17
19#include "Atom.h"
20#include "ElementMap.h"
21#include "utility.h"
22#include "Vec3D.h"
23#include <cstdlib> // atof, atoi
24#include <cmath> // exp, pow, cos
25#include <limits> // std::numeric_limits
26#include <stdexcept> // std::runtime_error
27
28using namespace std;
29using namespace nnp;
30
36
38{
39 if (ec != rhs.getEc() ) return false;
40 if (type != rhs.getType()) return false;
41 SymFncCompAngnWeighted const& c =
42 dynamic_cast<SymFncCompAngnWeighted const&>(rhs);
43 if (subtype != c.getSubtype()) return false;
44 if (rc != c.rc ) return false;
45 if (rl != c.rl ) return false;
46 if (angleLeft != c.angleLeft ) return false;
47 if (angleRight != c.angleRight ) return false;
48 return true;
49}
50
52{
53 if (ec < rhs.getEc() ) return true;
54 else if (ec > rhs.getEc() ) return false;
55 if (type < rhs.getType()) return true;
56 else if (type > rhs.getType()) return false;
57 SymFncCompAngnWeighted const& c =
58 dynamic_cast<SymFncCompAngnWeighted const&>(rhs);
59 if (subtype < c.getSubtype()) return true;
60 else if (subtype > c.getSubtype()) return false;
61 if (rc < c.rc ) return true;
62 else if (rc > c.rc ) return false;
63 if (rl < c.rl ) return true;
64 else if (rl > c.rl ) return false;
65 if (angleLeft < c.angleLeft ) return true;
66 else if (angleLeft > c.angleLeft ) return false;
67 if (angleRight < c.angleRight ) return true;
68 else if (angleRight > c.angleRight ) return false;
69 return false;
70}
71
72void SymFncCompAngnWeighted::calculate(Atom& atom, bool const derivatives) const
73{
74 double r2l = 0.0;
75 if (rl > 0.0) r2l = rl * rl;
76 double r2c = rc * rc;
77 double result = 0.0;
78
79 size_t numNeighbors = atom.numNeighbors;
80 // Prevent problematic condition in loop test below (j < numNeighbors - 1).
81 if (numNeighbors == 0) numNeighbors = 1;
82
83 for (size_t j = 0; j < numNeighbors - 1; j++)
84 {
85 Atom::Neighbor& nj = atom.neighbors[j];
86 size_t const nej = nj.element;
87 double const rij = nj.d;
88 if (rij < rc && rij > rl)
89 {
90 double radij;
91 double dradij;
92#ifndef N2P2_NO_SF_CACHE
93 if (cacheIndices[nej].size() == 0) cr.fdf(rij, radij, dradij);
94 else
95 {
96 double& crad = nj.cache[cacheIndices[nej][0]];
97 double& cdrad = nj.cache[cacheIndices[nej][1]];
98 if (crad < 0) cr.fdf(rij, crad, cdrad);
99 radij = crad;
100 dradij = cdrad;
101 }
102#else
103 cr.fdf(rij, radij, dradij);
104#endif
105 for (size_t k = j + 1; k < numNeighbors; k++)
106 {
107 Atom::Neighbor& nk = atom.neighbors[k];
108 size_t const nek = nk.element;
109 double const rik = nk.d;
110 if (rik < rc && rik > rl)
111 {
112 // Energy calculation.
113 Vec3D drij = nj.dr;
114 Vec3D drik = nk.dr;
115 Vec3D drjk = nk.dr - nj.dr;
116 double rjk = drjk.norm2();
117 if (rjk >= r2c || rjk <= r2l) continue;
118 rjk = sqrt(rjk);
119
120 double radik;
121 double dradik;
122#ifndef N2P2_NO_SF_CACHE
123 if (cacheIndices[nek].size() == 0)
124 {
125 cr.fdf(rik, radik, dradik);
126 }
127 else
128 {
129 double& crad = nk.cache[cacheIndices[nek][0]];
130 double& cdrad = nk.cache[cacheIndices[nek][1]];
131 if (crad < 0) cr.fdf(rik, crad, cdrad);
132 radik = crad;
133 dradik = cdrad;
134 }
135#else
136 cr.fdf(rik, radik, dradik);
137#endif
138 double radjk;
139 double dradjk;
140 cr.fdf(rjk, radjk, dradjk);
141
142 double costijk = drij * drik;
143 double rinvijik = 1.0 / rij / rik;
144 costijk *= rinvijik;
145
146 // By definition, our polynomial is zero at 0 and 180 deg.
147 // Therefore, skip the whole rest which might yield some NaN
148 if (costijk <= -1.0 || costijk >= 1.0) continue;
149
150 // Regroup later: Get acos(cos)
151 double const acostijk = acos(costijk);
152 // Only go on if we are within our compact support
153 if (acostijk < angleLeftRadians ||
154 acostijk > angleRightRadians) continue;
155 double ang = 0.0;
156 double dang = 0.0;
157 ca.fdf(acostijk, ang, dang);
158
159 double const rad = radij * radik * radjk; // product of cutoff fcts
160 ang *= elementMap.atomicNumber(nej)
161 * elementMap.atomicNumber(nek);
162 result += rad * ang;
163
164 // Force calculation.
165 if (!derivatives) continue;
166
167 double const dacostijk = -1.0
168 / sqrt(1.0 - costijk * costijk);
169 dang *= dacostijk
170 * elementMap.atomicNumber(nej)
171 * elementMap.atomicNumber(nek);
172 double const rinvij = rinvijik * rik;
173 double const rinvik = rinvijik * rij;
174 double const rinvjk = 1.0 / rjk;
175 double phiijik = rinvij * (rinvik - rinvij * costijk);
176 double phiikij = rinvik * (rinvij - rinvik * costijk);
177 double psiijik = rinvijik; // careful: sign flip w.r.t. notes due to nj.dGd...
178 phiijik *= dang;
179 phiikij *= dang;
180 psiijik *= dang;
181
182 // Cutoff function might be a divide by zero, but we screen that case before
183 double const chiij = rinvij * dradij * radik * radjk;
184 double const chiik = rinvik * radij * dradik * radjk;
185 double const chijk = -rinvjk * radij * radik * dradjk;
186
187 // rijs/rij due to the shifted radial part of the Gaussian
188 double const p1 = rad * phiijik + ang * chiij;
189 double const p2 = rad * phiikij + ang * chiik;
190 double const p3 = rad * psiijik + ang * chijk;
191 drij *= p1 * scalingFactor;
192 drik *= p2 * scalingFactor;
193 drjk *= p3 * scalingFactor;
194
195 // Save force contributions in Atom storage.
196 atom.dGdr[index] += drij + drik;
197#ifndef N2P2_FULL_SFD_MEMORY
198 nj.dGdr[indexPerElement[nej]] -= drij + drjk;
199 nk.dGdr[indexPerElement[nek]] -= drik - drjk;
200#else
201 nj.dGdr[index] -= drij + drjk;
202 nk.dGdr[index] -= drik - drjk;
203#endif
204 } // rik <= rc
205 } // k
206 } // rij <= rc
207 } // j
208
209 atom.G[index] = scale(result);
210
211 return;
212}
Contains element map.
Definition ElementMap.h:30
SymFncBaseCompAngWeighted(std::size_t type, ElementMap const &)
Constructor, initializes type.
CompactFunction ca
Compact function member for angular part.
double angleLeftRadians
Left angle boundary in radians.
double angleRight
Right angle boundary.
double angleRightRadians
Right angle boundary in radians.
std::string getSubtype() const
Get private subtype member variable.
double rl
Lower bound of compact function, .
CompactFunction cr
Compact function for radial part.
std::string subtype
Subtype string (specifies e.g. polynom type).
virtual void calculate(Atom &atom, bool const derivatives) const
Calculate symmetry function for one atom.
SymFncCompAngnWeighted(ElementMap const &elementMap)
Constructor, sets type = 24.
virtual bool operator==(SymFnc const &rhs) const
Overload == operator.
virtual bool operator<(SymFnc const &rhs) const
Overload < operator.
Symmetry function base class.
Definition SymFnc.h:40
std::size_t type
Symmetry function type.
Definition SymFnc.h:268
std::size_t index
Symmetry function index (per element).
Definition SymFnc.h:272
double scalingFactor
Scaling factor.
Definition SymFnc.h:294
std::size_t getType() const
Get private type member variable.
Definition SymFnc.h:355
double rc
Cutoff radius .
Definition SymFnc.h:292
std::vector< std::vector< std::size_t > > cacheIndices
Cache indices for each element.
Definition SymFnc.h:306
ElementMap elementMap
Copy of element map.
Definition SymFnc.h:270
double scale(double value) const
Apply symmetry function scaling and/or centering.
Definition SymFnc.cpp:169
std::size_t getEc() const
Get private ec member variable.
Definition SymFnc.h:356
std::vector< std::size_t > indexPerElement
Per-element index for derivative memory in Atom::Neighbor::dGdr arrays.
Definition SymFnc.h:302
std::size_t ec
Element index of center atom.
Definition SymFnc.h:276
Definition Atom.h:29
Struct to store information on neighbor atoms.
Definition Atom.h:36
std::vector< double > cache
Symmetry function cache (e.g. for cutoffs, compact functions).
Definition Atom.h:49
std::size_t element
Element index of neighbor atom.
Definition Atom.h:42
double d
Distance to neighbor atom.
Definition Atom.h:44
Vec3D dr
Distance vector to neighbor atom.
Definition Atom.h:46
std::vector< Vec3D > dGdr
Derivatives of symmetry functions with respect to neighbor coordinates.
Definition Atom.h:60
Storage for a single atom.
Definition Atom.h:33
std::vector< Neighbor > neighbors
Neighbor array (maximum number defined in macros.h.
Definition Atom.h:170
std::vector< Vec3D > dGdr
Derivative of symmetry functions with respect to this atom's coordinates.
Definition Atom.h:161
std::vector< double > G
Symmetry function values.
Definition Atom.h:146
std::size_t numNeighbors
Total number of neighbors.
Definition Atom.h:109
Vector in 3 dimensional real space.
Definition Vec3D.h:30
double norm2() const
Calculate square of norm of vector.
Definition Vec3D.h:299